
DraftBrian Gilman Page 1 6/13/04

OmniGene Platform Overview ..3

Introduction ...3
A Little History..4
High Level Concepts ...6

Design Goals: ..6
Design Methodology:...6
OmniGene Framework Overview:..7

The Analysis Framework: ..9
Introduction: ..9

The Web Service Framework: ..27
The Transform Framework (JAXB):...30
The Handler Frameworks: ..30
The Security Frameworks:..30
The OmniDAS Framework: ...30

Main Framework Classes: ..31
The Database Frameworks: ..40
The Validator Framework: ...40
The Lookup Framework:..40
The Bio Framework: ..40
The DBSieve Framework: ..40

Getting To Know OmniGene Services: ..40
The OmniGene Analysis Engine (OAE) Service:..40
The DAS Service: ..40
The Security Service: ...40
The Single Sign On Service:...40
The Lookup Service: ..40
The Mailer Service:..40
The ProjPed Service:..40
The SNP Service: ...40
The Single Sign On Service (SSO): ..40

Layout Of OmniGene Code Base: ..40
OmniGene Build System:...40
OmniGene Runtime System:..43
Testing Provisions:...44
Running OmniGene Tests: ...44
Running The OmniGene Examples: ...44

Appendix ...44
Recommended Coding Practice..44

DraftBrian Gilman Page 2 6/13/04

Using CVS...44

DraftBrian Gilman Page 3 6/13/04

OmniGene Platform Overview

Introduction

OmniGene is a platform and collection of frameworks that provide an infrastructure and
“glue” that enable disparate development teams, working in different languages to
leverage each other’s work. OmniGene is specifically built for the bioinformatician who
must deal with large, distributed, and often ambiguous data and data types. OmniGene is
implemented using Java Enterprise technology and web services technologies including
Enterprise Java Beans (EJB), XML, and Simple Object Access Protocol (SOAP). The
OmniGene team understands that each institution and development team has their own
expertise and engineering requirements in terms of: level of development experience,
engineering needs, time constraints and IT infrastructure. Therefore, the we have tried to
abstract away as much of the “hard stuff” as possible leaving the Bioinformatician to
concentrate on the task at hand. In the following few sections we will try and guide the
beginning OmniGene developer through the installation, set-up, and runtime environment
required to run your very own OmniGene instance. we will start with a little historical
background, and then quickly transition to the nuts and bolts of the platform.

DraftBrian Gilman Page 4 6/13/04

A Little History

The OmniGene platform is a 3+ year old project that has gone through many rewrites and
transitions. OmniGene is sponsored and originally funded by the Whitehead Institute, an
organization dedicated to scientific endeavors such as:

 The sequencing of the Human Genome
 Comparative Genomics
 Medical and Population Genetics
 Cancer Research

For more information please visit our website at: http://www-genome.wi.mit.edu this site
will give a good overview of our work and vision for genomic, proteomic, medical, and
cancer research.

These scientific endeavors consume a vast quality of programmer resource and IT
infrastructure. In fact, the Whitehead Institute current employs over 70 Bioinformaticians
and more than 350 laboratory technicians. They have produced massive quantities of data
that must be put into the public domain and analyzed to find out what makes us tick,
where we came from, why we are predisposed to certain diseases and why certain cells
go awry and become cancerous. The questions do not stop there as there are many, many
more questions that would fill this document.

A few years ago Bioinformatics was a nascent field, there were no O’Reilly books that
described how to perform Blast, search databases, or how to wield the Perl programming
language to solve “common” Bioinformatics tasks. Bioinformaticians had (and still has)
very variable backgrounds and skills from: the Biologist who had learned programming
out of a book, to the computer scientist well versed in algorithmic design and analysis.
Somewhere in the middle of these two programmer types lies the software engineer who
must,: aggregate data from disparate databases, run algorithms for users, and provide user
interfaces that suite the scientific needs of their Biologist counterpart (read customer).
These people are the support system or “glue” that is quickly becoming the foundation of
Biology today. OmniGene was first built specifically for these programmers as we
observed that many of the programming tasks that these people were performing were
redundant across groups and approximately 40-50% of their time could be saved if these
tasks could be abstracted into reusable software components. Below is a list of some of

DraftBrian Gilman Page 5 6/13/04

the activities that OmniGene aims to produce as reusable components or contracts for
programmers to follow:

1) Data visualization in terms of genomic information
2) Data aggregation from disparate public/private databases
3) Asynchronous execution of command line driven tools
4) Semantic correlations between data and data types

We also quickly realized that, the level of skill required to produce and consume data was
very variable in the Bioinformatics space. Herein lies the ultimate challenge: To produce
a software framework that was accessible to the Bioinformatics community at large
without making the community have to jump through hoops to understand and start
seeing results.

We believe that we have produced such a framework and runtime environment using
tried and true software engineering principles garnered from other software engineering
communities such as: Financial and Business domain, Enterprise Java infrastructure
groups (Jboss etc) and Physics/Mathematics engineering domain.

As you can see, OmniGene is quite an ambitious project with many different, yet
complimentary, components. However, we feel that, by cross cutting the Bioinformatics
domain into these 4 activities, a complete software architecture will be produced that is
capable of satisfying our target audience: The Genomics or Discovery based researcher.

DraftBrian Gilman Page 6 6/13/04

High Level Concepts

Design Goals:

OmniGene’s main design goal is to allow as many programmers access to the services
that the middleware exposes. OmniGene calls the components that it exposes Services.
Services are built upon software templates called Frameworks. We will explore more of
the design of Services and Frameworks in the section: OmniGene Framework
Overview and OmniGene Directory and Code Structure.

Design Methodology:

OmniGene utilizes the Java programming language at its core and exposes its capabilities
as web services. This allows client applications, written in a multitude of different
languages, to access these services without having to “know” the internals of the
OmniGene engine. This is reflected in our CVS tree in fact, developers have written
client applications in Python, Perl, Objective-c and Javascript (with others coming). In
fact, any languages that supports web services (XML over http using the SOAP dialect)
may access our java core. Developers looking to extend the engine must gain some
familiarity with the core components and subsystems that are documented within this
manual.

Figure 1 shows a graphical depiction of how the platform exposes Services to a
heterogeneous programming environment:

DraftBrian Gilman Page 7 6/13/04

Clients wishing to access services can either utilize Proxy code that is provided as part of
the framework or write their own Proxy to OmniGene web services. The section:” The
Web Service Framework“ provides an overview of how to utilize an OmniGene Proxy or
write your own.

OmniGene Framework Overview:

Figure 2 shows a graphical depiction of the omnigene frameworks. They are shown in the
vertical box labeled Framework Layer. As mentioned before, Frameworks are
templates that the Bioinformatician must adhere to writing their own Service.
Frameworks provide functionality such as:

1) Exposure of a piece of code as a web service
2) Connections to a biological data store
3) Handling of messages from clients and dispatch to the appropriate piece of

middleware
4) Providing security and authentication schemes
5) Finding other pieces of middleware on the network

DraftBrian Gilman Page 8 6/13/04

Figure 2: The OmniGene System Architecture

DraftBrian Gilman Page 9 6/13/04

Getting To Know OmniGene Frameworks:

As stated above OmniGene Frameworks are software templates or contracts that the
software developer must adhere. These design contracts allow the middleware to manage
the life cycle of your component. This includes: instantiation, caching, clean up, and
destruction. By following the design contracts outlined in the following sections you will
never have to think about the life cycle of your component. Instead, you can concentrate
on the problem at hand and clever solutions to that problem.

In this section we will dive deep into each framework component, the contracts you must
follow, how each framework works, its design strategy, dependencies on other
frameworks or third party tools and its life cycle. We will conclude each section with a
piece of example code that utilizes this piece of the framework and bring you through the
example line by line.

The Analysis Framework:

Introduction:

Releasing algorithms to the biological community (or any research environment) is
typically a painstaking and error prone process. This stems from the fact that
bioinformaticians do not usually write their programs with a user interface in mind and,
instead, depend on a command line interface.

Typically, command line interfaces satisfy only a subset of so-called power users in an
organization, leaving others in the dark in terms of input parameters, file formats, and
output generated from these programs. READMEs and other documentation are usually
left unread, forcing the developer of the program to answer the same questions time and
time again.

Worse still, once a command line program becomes popular to the not so tech savvy
biologist, the bioinformatician is left running their program each and every time data is
ripe for analysis. One common solution to this problem is to set up a web interface for the
popular program and let the biologist run it for themselves. This works well for a single
program but becomes quite cumbersome when there are hundreds.

The OmniGene Analysis Engine (OAE) solves this problem by providing a runtime
engine that interfaces with any command line driven program by exposing these
programs as web services using a single common interface and a little glue code. The

DraftBrian Gilman Page 10 6/13/04

algorithm developer writes a single client application in their favorite programming
language and makes this available to their biologist counterpart. After the interface has
been produced the algorithm developer is freed from having to run their programs for the
biologist. The bioinformatician can then concentrate on writing programs that solve the
next set of interesting biological problems.

Analysis Framework Design:

The OmniGene analysis framework was designed to allow any command line tool written
in any language to be exposed as a web service. Figure 3 shows the general design of the
analysis framework in terms of its runtime components.

DraftBrian Gilman Page 11 6/13/04

Figure 3: Analysis Framework Runtime Overview

DraftBrian Gilman Page 12 6/13/04

Table 1: Enumeration of the components found in Figure 3 and provides a brief
description of how they are utilized in the platform:

Component Name Description
Analysis Web Service Provides an interface to the Analysis

Engine. Provides SOAP interface to clients
Analysis Engine Keeps track of files in the database,

executable status (running/dead/etc), output
files, and executable life cycle

HSQLDB Used as data store for status information,
file location, as well as other Task
information

File System Used to store output files from your
command line tool

Executable Any executable written in any language

The OmniGene Analysis Engine is written as a set of EJB’s and is deployed in the JBoss
Enterprise Java Bean Container. The Analysis Web Service utilizes Apache’s Tomcat
Servlet Container and the Apache Axis SOAP engine. HSQLDB is used so that this
engine may exist on any hardware platform. Previous versions of this engine and
framework utilized the Postgresql database however, this choice of RDBMs excluded
Windows users as cygwin was needed to perform its installation.

DraftBrian Gilman Page 13 6/13/04

Main Framework Classes:

DraftBrian Gilman Page 14 6/13/04

DraftBrian Gilman Page 15 6/13/04

Class Name Class Description
Analysis Task This is the wrapper class which you must

extend in order to execute your command
line tool

JobInfo Class that provides information about a
particular instance of a running analysis
task

ParameterInfo Class that describes a particular parameter
to your tool: name, whether it is a file or
not etc

TaskInfo Class that fully described your tool by
encapsulating Parameters to your tool,
name of the task etc.

TaskInfoAttributes Bean that contains a collection of user
defined attributes for this service. It allows
you to push all attributes needed to run a
task into the database

JobStatus Enumeration Interface that describes the
state of your running Job

Exceptions When Something Goes Wrong and you’ve
asked for a task we don’t know, or asked
about a Job you didn’t submit to the engine
etc. about we throw this

DraftBrian Gilman Page 16 6/13/04

Analysis Framework Sequence Diagrams:
1. Get Tasks

DraftBrian Gilman Page 17 6/13/04

2. Submit job

DraftBrian Gilman Page 18 6/13/04

DraftBrian Gilman Page 19 6/13/04

3. Get result

4. Running job

DraftBrian Gilman Page 20 6/13/04

5. Task Management

Add new task:

DraftBrian Gilman Page 21 6/13/04

DraftBrian Gilman Page 22 6/13/04

Update task:

DraftBrian Gilman Page 23 6/13/04

Analysis Framework Example Code:

This example will be commented in another version of this document. This is taken from
one of our test cases found in <omnigene_home>/languages/java/src/tests/webservice. It
shows you how to call the OmniGene Analysis Engine from code.

import java.util.*;
import java.io.*;

import junit.framework.*;
import org.apache.log4j.Category;

import edu.mit.wi.omnigene.framework.analysis.webservice.client.*;
import edu.mit.wi.omnigene.framework.webservice.WebServiceException;

import edu.mit.wi.omnigene.framework.analysis.*;

public class GetTasksTest extends TestCase
{
 private AnalysisWebServiceProxy proxy = new
AnalysisWebServiceProxy(new
URL(“http://somewhere.on.the.internet.com”);

 private static Category cat =
Category.getInstance(GetTasksTest.class.getName());

 public GetTasksTest(String name)
 {
 super(name);
 }

 protected void setUp()
 {
 }

 public void testGetTasks()
 {
 cat.info("Testing get tasks.");
 cat.info("WebService URL: " +
tests.webservice.TestConstants.WEBSERVICE_URL);

 try {
 TaskInfo[] ti = proxy.getTasks();

 assertNotNull("No tasks returned", ti);

DraftBrian Gilman Page 24 6/13/04

 if (ti != null) {
 for (int x = 0; x < ti.length; x++) {
 cat.info("\tName: " + ti[x].getName());
 cat.info("\tDescription: " +
ti[x].getDescription());
 cat.info("\tID: " + ti[x].getID());
 cat.info("\tParm Info: " +
ti[x].getParameterInfo());
 cat.info("\tClass name: " +
ti[x].getTaskClassName());

 Map m = ti[x].getTaskInfoAttributes();
 if (m != null) {
 TaskInfoAttributes tia = new
TaskInfoAttributes(m);
 cat.info("\tTask Attr: " + tia.toString()
+ "\n");
 }
 else {
 cat.info("\tTask Attr: <none>\n");
 }
 }
 }
 }
 catch (WebServiceException wse) {
 cat.error("Failed to get tasks: " + wse.getMessage());
 fail("Failed to get tasks.");
 }
 }

 public void tearDown() {
 }

 public static Test suite()
 {
 return new TestSuite(GetTasksTest.class);
 }

 public static void main(String[] args)
 {
 junit.textui.TestRunner.run(suite());
 }
}

Installing And Configuring the OmniGene Analysis Engine Runtime:

DraftBrian Gilman Page 25 6/13/04

We have been hearing a lot of complaints over the last few years about installing and
configuring the platform with regard to the Omnigene Analysis Engine and Framework.
In response to this we have automated the installation process for the components and
runtime systems needed get this subsystem working.

You will need the Ant build tool to get this running. Please see the section entitled:

 OmniGene Runtime System

to bootstrap your system with apache’s Ant tool.

All you will need to do to install this sub-component it issue the following command:

 ant deploy-oae-runtime

This command will download all components needed to use this sub-system, configure
the runtime engine and place everything in a convenient place
OMNIGENE_HOME/omnigene-x.xx/runtime where x.xx is the build number.

<Warning>
The next step have not been tested on all platforms. Due to threading issues they may fail.
This is especially true for Windows users!

After this task has been executed you will need to run one more additional command:

 ant execute-runtime-tests

This will finalize the configuration step and install a default “echo task” into the
OmniGene Analysis Engine for you to work with. You may see some warnings etc. just
ignore them for now, the system is telling you that it has not been initialized.

</Warning>

If the above command fails, quit ant (control-c on unix) and execute the following
commands in a terminal window backgrounding each task as you go (in unix execute the
bg and control-z command):

ant start-hsqldb &
ant start-jboss &

DraftBrian Gilman Page 26 6/13/04

ant start-tomcat&

Note: No ampersands for the following

ant deploy-echomf-task
ant deploy-analysis-webservice

Finally ant execute-oae-tests

You should see some output and then a

Successful Test at the end.

Congratulations! You’ve got the OmniGene Analysis Engine working. To keep this going
execute the three commands above that have ampersands next to them and you’re ready
to go.

if you’d like to see this all in action with our viewer application perform the following:

 ant jar-omniview
 cd OMNIGENE_HOME/build/languages/java/jars
 mv omniview.jar ../
 edit OMNIGENE_HOME/build/languages/java/resources/omnigene.properties
 finding the property analysisServiceURL=@@Analysis_URL@@
 replacing the @@xxx@@ with http://localhost:8080/axis/servlet/AxisServlet

 Then file up omniview using the following command:

 cd OMNIGENE_HOME/build/languages/java/
 java –Domnigene.conf=./resources –jar omniview.jar

After the OmniView application has started try clicking on the “analysis” tab and see the
list of services that are available. Click on the “echo task” and upload two files to the
service. Click on the “History” tab and see if the task’s status. From there you can see the
results of your task. Double click on the results and you will see the files that you
uploaded to the server. This panel and the logic contained within can be found in:

 edu.mit.wi.omniview.analysis.*

DraftBrian Gilman Page 27 6/13/04

You are free to use these GUI controls for your own application. Have fun!

The Web Service Framework:

Introduction:

 Web services are components written in any language and exposed via a Simple
Object Acess Protocol (also known as SOAP). SOAP is a platform and language
independent grammer, described in XML, that allows disparate languages and platforms
to interact as if they were running in the same process. SOAP allows disparate processes
to interact in two separate modes: Remote Procedure Call and Document based mode.
RPC mode allows two process running on different machines to interact as if they were
running on the same computer. Document based calls allow a process to send a document
with arbitrary XML to another process for parsing. The latter type of messaging is useful
for dynamic messaging or workflow related tasks. OmniGene utilizes an RPC style of
messaging for most if not all of its tasks.

 To make the runtime system more concrete a typical sequence of calls to the
different pieces of the runtime system are shown in figure X.X below. Please note that
processing goes in a counter clockwise fashion starting in the bottom left hand corner. of
the diagram.

DraftBrian Gilman Page 28 6/13/04

 The OmniGene team has written a small set of interfaces and abstract classes to
interface with the Omnigene runtime system. This allows the core development team to
maintain control over how processes are controlled, instantiated, deployed, and
destroyed. Table X.X describes the WebService interface and its methods.

Method Name Method Description
getWebServiceName This method returns the

name of this webservice as a
String

getWebServiceInfo Returns meta data associated
with this web service

DraftBrian Gilman Page 29 6/13/04

including: textual
description of the web
service, version of the web
service, and the author of the
service

getEncodingScheme returns the enconding
scheme used for this web
service examples include:
HTML/SOAP/BSML etc

setEncodingScheme used by the runtime engine
to set the encoding scheme

getEncondingSchemeVersion/setEncodingSchemeVersion Used by the runtime engine
to get and set the version of
the schema that the will be
used by omnigene runtime
components

ping This allows the client side
interface to test whether this
web service is alive or not
sends back a text String

Because this interface is quite generic, the omnigene team has written an abstract class
called GenericWebService that implements the methods described in Table X.X. This is
the abstract class that each and every web service that you write to expose a service in the
OmniGene runtime will extend to expose its functionality to the world. This webservice
can be found in the package:

 edu.mit.wi.omnigene.framework.webservice.GenericWebService and implements
the WebService interface.

Note: At some point in the future you will not have to extend this webservice for each
and every web service that you write. The Omnigene team is working on allowing you to
expose your executables by placing them in a directory for inspection and exposure.

Implementing an OmniGene web service

 Developers who are used to working with the Apache Tomcat Servlet engine
should have little trouble understanding the implementation strategy of the OmniGene

DraftBrian Gilman Page 30 6/13/04

web service engine. Developers extend the generic web service abstract class and write
their custom logic inside their base class. Once they do this they have complete access to
all the functionality and context information that Apache Axis, and Apache Tomcat
provide. As mentioned above the OmniGene web service engine utilizes these Java
Enterprise components to perform most of its work.

The Transform Framework (JAXB):

The Handler Frameworks:

The Security Frameworks:

The OmniDAS Framework:

Introduction:

Before DAS a Bioinformatician wishing to obtain all the annotations available for a
particular segment of DNA had to either download the entire GenBank database or troll
through all records looking for all BAC clones that existed within the segment he/she
needed. This poor soul then had to parse all the data (in different formats) to get out the
particular piece of information he/she wanted. The Distributed annotation system has
tried to alleviate the screen scraping/database download nightmare that a
Bioinformatician has been faced with since the inception of the FASTA format.

The OmniDAS framework is an implementation of the Distributed Annotation System
(DAS 1.01) specification originally conceived by Lincoln Stein, Sean Eddy, and Robin
Dowel at Cold Spring Harbor Laboratory. The purpose of this specification is to provide
researchers and Bioinformaticians a simple and robust solution for obtaining
computational or empirically derived sequence and annotations on a particular segment

1 See http://www.biodas.org

DraftBrian Gilman Page 31 6/13/04

of sequence from a remote data store (such as a database or flat file in fasta or GFF2
format). This specification calls for a REST3 like request/response infrastructure where
you http-GET a URL and are returned an XML document of annotations that you asked
for.

The OmniDAS framework provides a client side API to connect and receive data from a
DAS system provided that it follows the DAS 1.0 (1.5 is not implemented) specification.
The OmniDAS system is generally used in conjunction with the Transformation
framework as these two systems hide all the details of XML parsing and transformation
from the programmer. Examples are provided below to get a feeling for how to use these
two frameworks.

OmniDAS Design Overview:

OmniDas has been designed to be a standalone framework in the omnigene system. This
means that the OmniGene team has not tied this framework to any other third party tools
or other OmniGene frameworks.

The OmniDAS system was designed to support multiple implementation of the DAS
specification. Therefore, we chose to implement DAS using Java Interfaces. Each section
of the specification (on the request side) is a java object. The response is returned to the
programmer as a java.io.InputStream. This stream can then be tokenized by the
Transformation framework or your own XML parser.

Main Framework Classes:

See: http://omnigene.sf.net/docs/images/omnidas.gif

Class Name Class Description
DASBase Base Interface that all other interfaces

extend (to make everything serializable)
DASRequest Base Request object that all other request

interfaces implement this includes
DASDNARequest, DASDSNRequest etc.

DASResponse Interface that is used to get the response
back from the server. This gets you an

2 http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml
3 http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

DraftBrian Gilman Page 32 6/13/04

java.io.InputStream containing XML
DASQuery Container Class that you use to interact

with a particular DAS server this class
encapsulates the response and performs
your request for you

DASQueryFactory This class gives you back the correct
DASQuery based on the DASRequest you
pass to it

Sequence Diagrams:
Coming Soon

Example Code:

This example shows how to connect to the UCSC DAS server and retrieve XML from the
InputStream obtained from the DASResponse.

Example 1:
package examples.omnidas;

//Import the omnidas package
import edu.mit.wi.omnigene.framework.omnidas.*;
import edu.mit.wi.omnigene.framework.omnidas.request.*;
import edu.mit.wi.omnigene.framework.omnidas.response.*;

import java.io.*;
import java.net.*;

/**
 * This example will try and highlight some of the
 * functionality of the DAS 1.0 side of the omnidas
 * API.
 *

 *

 * We will:
 *
 * Show how to connect to a datasource
 * Show how to use the different request objects
 * Show How to use the QueryFactory to get back a DASRsponse
 * Get unparsed XML from the data source
 *@author Brian Gilman
 *@version $Revision: 1.2 $
 */

DraftBrian Gilman Page 33 6/13/04

public class UCSCDASExample {

 private static final String UCSC_URL = "http://genome-
test.cse.ucsc.edu/cgi-bin/das";
 //private static final String UCSC_URL =
"http://www.fruitfly.org/cgi-bin/das";
 private static DASQueryFactory factory = null;

 public static void main(String[] args){

 try{
 /* We'd like to get all the DSN's for the golden path DAS
service
 * So we need to construct a DASDSNQueryImpl pasing it the
version of the DAS
 * server and the URL for the server
 */

 DASDSNRequestImpl dsnRequest = new DASDSNRequestImpl(1.0f,
new URL(UCSC_URL)); //that's it!

 /*
 * Now we get an instance of the DASQueryFactory
 */

 factory = DASQueryFactory.getInstance();

 /*
 * pass the Request to the factory using the getDASQuery `
 method
 * This will get us the proper instance of a DASQuery
implementation
 * in this case we get back a 1.0 version of the Query object
 */
 DASQuery query = null;

 try{
 query = factory.getDASQuery(dsnRequest);
 }catch(DASException edas){
 edas.printStackTrace();
 }
 /**
 * We can now execute the query against the DAS server
 * the Query class connects to the server automatically for
us
 */

 query.doDASQuery();

DraftBrian Gilman Page 34 6/13/04

 /**
 * now get the DASResponse and print out some XML from the
 * InputStream provided in the response object
 */

 DASResponse resp = query.getDASResponse();

 //print it

 BufferedInputStream in = new
BufferedInputStream(resp.getResponse());

 int c;

 while((c = in.read()) != -1){
 System.out.print((char)c);
 }

 }catch(Exception e){
 e.printStackTrace();
 }
 }
}

Example 2: Getting Annotations From Ensembl And Parsing With JAXB

package examples.omnidas;

import edu.mit.wi.omnigene.framework.omnidas.*;
import edu.mit.wi.omnigene.framework.omnidas.request.*;
import edu.mit.wi.omnigene.framework.omnidas.response.*;

import edu.mit.wi.omnigene.framework.jaxb.das.dsn.*;
import edu.mit.wi.omnigene.framework.jaxb.das.gff.*;
import edu.mit.wi.omnigene.framework.jaxb.das.entrypoints.*;

//import edu.mit.wi.omnigene.omnibus.*;

import java.net.*;
import java.io.*;
import java.util.*;
import javax.xml.bind.*;
import javax.xml.marshal.*;
/**
 * Simple example which connects to Ensembl asking for
 * DSN and EntryPoints
 *@author Brian Gilman

DraftBrian Gilman Page 35 6/13/04

 *@version $Revision: 1.3 $
 */

public class EnsemblDASExample{

 private static final String ENS_URL =
"http://servlet.sanger.ac.uk:8080/das";
 //private static final String ENS_URL = "http://genome-
test.cse.ucsc.edu/cgi-bin/das";
 private static DASQueryFactory factory = null;

 public static void main(String[] args){
 EnsemblDASExample ex = new EnsemblDASExample();
 Vector v = ex.getDSN();

 try{
 ex.printIds(v);
 ex.printEntryPoints(ex.getEntryPoints(v));
 }catch(Exception e){
 e.printStackTrace();
 }
 }

 public Vector getDSN(){

 Vector dsns = new Vector();

 try{

 /*
 * Declare an array of DSNImpl to return
 */

 /* We'd like to get all the DSN's for the ensembl DAS service
 * So we need to construct a DASDSNQueryImpl pasing it the
version of the DAS
 * server and the URL for the server
 */

 DASDSNRequestImpl dsnRequest = new DASDSNRequestImpl(1.0f,
new URL(ENS_URL)); //that's it!

 /*
 * Now we get an instance of the DASQueryFactory
 */

 factory = DASQueryFactory.getInstance();

DraftBrian Gilman Page 36 6/13/04

 /*
 * pass the Request to the factory using the getDASQuery
method
 * This will get us the proper instance of a DASQuery
implementation
 * in this case we get back a 1.0 version of the Query object
 */

 DASQuery query = null;

 try{
 query = factory.getDASQuery(dsnRequest);
 }catch(DASException edas){
 edas.getURI();
 edas.printStackTrace();
 }
 /**
 * We can now execute the query against the DAS server
 * the Query class connects to the server automatically for
us
 */

 query.doDASQuery();

 /**
 * now get the DASResponse and print out some XML from the
 * InputStream provided in the response object
 */

 DASResponse resp = query.getDASResponse();

 // DASMetaData contains te version of this server
 // as well as the schemaname used to transmit data
 // the version of the schema and the number
 // of charaters transmitted from this request
 DASMetaData dsmd = resp.getDASMetaData();

 System.out.println("DAS Server Version: " +
dsmd.getDASVersion());

 BufferedInputStream in = new
BufferedInputStream(resp.getInputStream());

 // Uncomment below to print XML in BufferedInputStream
 // Notice that this breaks the JAXB below.

 //int c;
 //while((c = in.read()) !=-1){

DraftBrian Gilman Page 37 6/13/04

 // System.out.print((char)c);
 //}

 //in.close();

 // The DASDSN object knows how to read in our XML stream from
 // the DASResponse object abve and unmarchal it into
 // objects for inspection
 // see www.javasoft.com/xml for a description of JAXB
 DASDSN dasDSN = DASDSN.unmarshal(in);

 in.close(); //always close your streams!

 // Here we use the JAXB method of getting things out of XML
documents
 // This is much like using JDOM where we get out Lists of
objects contained
 // in the XML
 List listOfDSNs = dasDSN.getDSN();

 //Get an Iterator to iterate over the list of DSN's in the
document
 for(ListIterator i = listOfDSNs.listIterator();i.hasNext();){
 // Must cast with fully qualified name because omnidas and
jaxb.das.dsn use the same
 // name ie. DSN
 edu.mit.wi.omnigene.framework.jaxb.das.dsn.DSN dsn =
(edu.mit.wi.omnigene.framework.jaxb.das.dsn.DSN)i.next();

 // Here we instantiate a new DSNImpl from omnidas and
set it's id
 // with the JAXB object's Id
 // DSN's have source objects and sources have id
attributes which
 // we need to instantiate an omnidas DASImpl object
 dsns.add(new DSNImpl(dsn.getSOURCE().getId()));
 }

 }catch(Exception e){
 e.printStackTrace();
 }

 return dsns;

 }

 public void printIds(Vector ids){

DraftBrian Gilman Page 38 6/13/04

 Enumeration e = ids.elements();

 while(e.hasMoreElements()){
 System.out.println(((DSNImpl)e.nextElement()).getID());
 }
 }

 /**
 * Given a Vector of DSN's print out EntryPoint object id's
 *@param v the vector of DSN's
 *@return a Hashtable where each key is the DSN and each value
 * is a vector of EntryPoints
 */
 public Hashtable getEntryPoints(Vector v) throws IOException,
MalformedURLException, UnmarshalException{
 Hashtable h = new Hashtable();
 Enumeration e = v.elements();
 Vector entries = null;
 BufferedInputStream in;
 DASResponse resp = null;

 while(e.hasMoreElements()){
 DSNImpl dsn = (DSNImpl)e.nextElement();
 DASEntryPointRequest entryPointRequest = new
DASEntryPointRequestImpl(1.0f, new URL(ENS_URL), dsn);
 factory = factory.getInstance();
 DASQuery query = null;
 try{
 query = factory.getDASQuery(entryPointRequest);
 }catch(DASException edas){
 System.out.println(edas.getURI());
 edas.printStackTrace();
 }

 try{
 query.doDASQuery();
 resp = query.getDASResponse();
 }catch(DASException eDas){
 System.out.println(eDas.getURI());
 System.out.println(eDas.toString());
 continue;
 }

 in = new BufferedInputStream(resp.getResponse());
 //int c;
 //while((c = in.read()) != -1){
 //System.out.print((char)c);
 //}

DraftBrian Gilman Page 39 6/13/04

 DASEP dasep = DASEP.unmarshal(in);

 in.close();

 ENTRYPOINTS eps = dasep.getENTRYPOINTS();

 List segments = eps.getSEGMENT();
 entries = new Vector();
 for(ListIterator i = segments.listIterator();i.hasNext();){

edu.mit.wi.omnigene.framework.jaxb.das.entrypoints.SEGMENT segment =
(edu.mit.wi.omnigene.framework.jaxb.das.entrypoints.SEGMENT)i.next();
 entries.add(segment.getId());
 }

 h.put(dsn,entries);

 }

 return h;
 }

 public void printEntryPoints(Hashtable entries){

 Enumeration keys = entries.keys();
 Vector v = null;

 while(keys.hasMoreElements()){
 DSNImpl dsn = (DSNImpl)keys.nextElement();
 v = (Vector)entries.get(dsn);
 Enumeration segments = v.elements();
 while(segments.hasMoreElements()){
 System.out.println("DSN: " + dsn.getID() + " has segment: "
+(String)segments.nextElement());
 }
 }
 }

}

DraftBrian Gilman Page 40 6/13/04

The Database Frameworks:

The Validator Framework:

The Lookup Framework:

The Bio Framework:

The DBSieve Framework:

Getting To Know OmniGene Services:

The OmniGene Analysis Engine (OAE) Service:

The DAS Service:

The Security Service:

The Single Sign On Service:

The Lookup Service:

The Mailer Service:

The ProjPed Service:

The SNP Service:

The Single Sign On Service (SSO):

Layout Of OmniGene Code Base:
See: http://omnigene.sourceforge.net/Package_Structure_OmniGene2.html

OmniGene Build System:

Note: OMNIGENE_HOME is referred to as the place where you downloaded or cvs
checked out omnigene2.

DraftBrian Gilman Page 41 6/13/04

The OmniGene build system utilizes Apache Ant to compile, deploy and test the
OmniGene system. OmniGene comes with a unix shell script to bootstrap your
OmniGene build (Windows users must download apache ant directly. If you’d like to
contribute a batch script to do this we’d be thankful!). To get started with OmniGene all
you need to do is execute the following command:

 ./bootstrap_build.sh

Apache’s ant will be downloaded to your computer and installed in OMNIGENE_HOME
(wherever you downloaded or cvs checkout(ed) the omnigene2 system. You will need to
put the <ANT_HOME>/bin directory in your path to execute ant. After you have
completed this task you are ready to build the OmniGene system. As a test try executing
the following command in your OMNIGENE_HOME directory:

 ant

You should see the following output:

antenv:
 [echo] ---
 [echo] Build environment for OmniGene 1.1.3 [2003]
 [echo] ---
 [echo] Ant version : Apache Ant version 1.5.1 compiled on October 2 2002
 [echo] Java version: 1.4.1_01
 [echo] ---
 [echo] Javac target : 1.3
 [echo] Javac debug : on
 [echo] Javac deprecation: false
 [echo] ---

targets:
 [echo] --
 [echo] Targets
 [echo] --
 [echo] compile-omnigene : compiles all omnigene framework source code
 [echo] compile-omniview : compiles all omniview source code
 [echo] compile-examples : compiles all example source code
 [echo] compile-tests : compiles all test source code
 [echo] compile-all : compiles everything
 [echo] jar-omnigene : jars omnigene core (see docs for details)
 [echo] jar-omniview : make self executing jar filefor viewer
 [echo] jar-lookup-service-mbean : see docs for details
 [echo] jar-lookup-service : see docs for details

DraftBrian Gilman Page 42 6/13/04

 [echo] create-lookup-jars : creates two targets above
 [echo] create-analysis-jars : creates analysis service jar files
 [echo] jar-snp-service : creates snp service jars
 [echo] jar-sso-service : creates single sign on jars
 [echo] jar-projped-service : creates projped ejbs and webservice
 [echo] jar-mailier-service : creates mail service
 [echo] jar-omnidas : creates omnidas framework
 [echo] jar-security : creates security ejb
 [echo] jar-authenticator : creates authentication service
 [echo] ear-application : creates full omnigene runtime as ear application
 [echo] jar-omnigene-examples : creates examples
 [echo] create-all-jars : creates all jar targets
 [echo] dist : creates the complete binary distribution
 [echo] srcdist : creates the complete source distribution
 [echo] javadocs : creates the javadocs
 [echo] clean : clean up files and directories
 [echo] targets : displays list of available targets
 [echo] ---

BUILD SUCCESSFUL
Total time: 4 seconds

If you do not see the output shown above please make sure that apache-ant is in you path
and try reading the apache-ant documentation online.

If you are successful, compiling OmniGene is simple, execute the following command:

 ant jar-omnigene

The output of this command will be placed in:

 OMNIGENE_HOME/build/languages/java/jars/omnigene.jar

This command builds the entire platform and is a good way to test whether your system is
configured properly.

DraftBrian Gilman Page 43 6/13/04

OmniGene Runtime System:

Introduction:

The OmniGene runtime system is dependent on three main components:
Apache’s Tomcat, JBoss, Apache Axis and HSQL (embedded java database). These
runtime components are used in conjunction to provide the following functionality:

Runtime Component Functionality
Jakarta-Tomcat Provides a runtime environment for the

Apache Axis System. it is used as a servlet
engine. However, any servlet engine that
can host apache axis (BEA
Weblogic/Jrun/Resin can be used here

JBoss Acts as both an Mbean server (Analysis
Engine, Lookup Service) and an Enterprise
Java Bean runtime system. This system is
used to access local databases (proj/ped
service) as well as embedded databases
(HSQL)

Apache Axis Apache Axis is used as the default SOAP
system in the omnigene frameworks. All
SOAP services are deployed inside this
system and are exposed through Axis.

HSQLDB This is used as our default embedded
database as it is platform independent and
fairly fast. The OmniGene Analysis Engine
uses this database. Other components may
use this in the future

DraftBrian Gilman Page 44 6/13/04

Testing Provisions:
Running OmniGene Tests:
Running The OmniGene Examples:

Appendix
Recommended Coding Practice
Using CVS

DraftBrian Gilman Page 45 6/13/04

